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Multiple-phenotypes analysis

Typical GWAS examine the correlation of each
phenotype and genotype pair one at a time,
single-phenotype analysis.

Often it is very useful to analyze many
phenotypes together. Especially, with the
advent of high-throughput technology, high-
dimensional multiple-phenotypes analysis is
preferable.



Multiple-phenotypes analysis

Information can be borrowed across
genes to improve variance estimates
and thereby increase statistical power.

Address overall state of a cell or
tissue. Detect variants related to o
profile of microbiota with tens of
thousands species.
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Previous methods

MANOVA, multivariate regression analysis

Designed for use with a small number of variables. P<<N
MANOVA assumes MYN

Only can use Euclidean distances

Data reduction methods - Cluster analysis, factor analysis, etc.

MDMR (Zapala et al., Front Genet, 2012)
Multivariate Distance Matrix Regression analysis.

Form a statistic to test the effect of some covariates on all of the phenotypes by
utilizing the similarity matrix that reflects the correlation of the samples with
respect to the expression values over the genes.

(YY) (2-1)

"Pseudo" F-statistics, /' = —==
tr(RR")/ (n-2)




Population structure cause False Positives
_

1 GWAS test the allele frequency differences between cases and
controls to find SNPs correlated with a disease.

o1 Allele frequencies vary from population to population due to each
population’s unique genetic/social history.

1 Not only disease-causing SNPs cause allele frequency difference but
also SNPs influenced by ancestry may also cause allele frequency

difference. o
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Population structure cause False Positives

GWAS test the allele frequency differences between cases and
controls to find SNPs correlated with a disease.

Allele frequencies vary from population to population due to each
population’s unique genetic/social history.

Not only disease-causing SNPs cause allele frequency difference but
also SNPs influenced by ancestry may also cause allele frequency
difference.

This problem is even more serious when analyzing multiple-phenotypes
because this bias in test statistics accumulates from each phenotype.

Unfortunately, none of the previously mentioned multivariate methods
are able to correct for the population structure and may cause a
significant amount of false positive results.

Nature Rewviews Genetics 13, 807-817 (November 2012) | doi:10.1038/nrg3335



A typical single-SNP test

y=u+X[+e

y . phenotypes (size n)

X : A SNP to test

B: contribution from the SNP

e : (nx 1) random effect, Var(e) = 6,2l

Effective design and analysis of systems genetics studies 8/16/2017



A ‘hypothetical’ true genetic model

y=pt), Xpte

y : phenotypes (size n)

X; : 1-th SNP to test

B;: contribution from the i-th SNP

e : (nx 1) random effect, Var(e) = c,2|

Effective design and analysis of systems genetics studie8 8/16/2017



True effect of a single SNP
]

y=pu+X, k+z#kXiﬁi+e
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Actual test is simple

e Y=u+ X B+, Xp+e
E'MEFXE yzle'Xk ¢ T€
MODEL
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There are unmodeled genetic factors
=

. Y=+ X B+, X+

UNMODELED
FACTORS

LINEAR y=u+X,p +e

MODEL

SIMPLE
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Unmodeled factors are not known
.
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Classical inbred strains

E musculus —
g HarEE RIS East Asian
2 Northern China fancy’ mouse
'_‘:',_’ o molossinus
3 Japan European
é castancs | - ‘fancy’mouse .
- Sﬂﬁﬁstasrtn Asifsi _ Classical inbred
- Snu?i‘?err? "&hinaa = mouse ‘?‘trel'ins
E > s domesticus (WSB/EiJ) 68%
,E molossinus (MOLF/EiJ) 10%
musculus (PWD/Phd) 6%
domesticus castaneus (CAST/EW) 3%
Western Europe Unknown origin 13%
-« >
Approximate ~1,000,000 ~10,000 ~1,000 ~100
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Complex genetic relatedness of lab

strains
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Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap
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Complex genetic relatedness of lab

strains
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Body weight phenotypes of 38 inbred mouse strains from JAX MPL
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What we would expect
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What we actually observed
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Example of spurious associations

body weight
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Body weight phenotypes of 38 inbred mouse strains from JAX MPL



Example of spurious associations
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Source of spurious association
N

H,: [Phenotype] L[SNP] H,: [Phenotype]~[SNP]

SNP Phenotype
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Source of spurious association

H,: [Phenotype] L[SNP]

SNP

Confounding effects in association and eQTL studieg 8/16/2017

H,: [Phenotype]~[SNP]

Phenotype




Many SNPs are

strongly correlated to the population structure

H,: [Phenotype] L[SNP]

Many
SNPs

Confounding effects in association and eQTL studies
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H,: [Phenotype]~[SNP]

Phenotype




Some phenotypes are

strongly correlated to population structure

H,: [Phenotype] L[SNP]

Many
SNPs

H,: [Phenotype]~[SNP]
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ABSTRACT

In recent years in silico analysis of common laboratory mice has been introduced and subsequently
applied, in slightly different ways, as a methodology for gene mapping. Previously we have demonstrated
some limitation of the methodology due to sporadic genetic correlations across the genome. Here, we
revisit the three main aspects that affect in silico analysis. First, we report on the use of marker maps: we
compared our existing 20,000 SNP map to the newly released 140,000 SNP map. Second, we investigated the
effect of varying strain numbers on power to map QTL. Third, we introduced a novel statistical approach: a
cladistic analysis, which is well suited for mouse genetics and has increased flexibility over existing in silico
approaches. We have found that in our examples of complex traits, in sifico analysis by itself does fail 1o
uniquely identify quantitative trait gene (QTG)-containing regions. However, when combined with addi-
tional information, it may significantly help to prioritize candidate genes. We therefore recommend using
an integrated work flow that uses other genomic information such as linkage regions, regions of shared
ancestry, and gene expression information to obtain a list of candidate genes from the genome.
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Unmodeled factors are not known
.
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UNMODELED
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SIMPLE

LINEAR y=u+X,p +e

MODEL
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Unmodeled factors & population structure
-
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Unmodeled factors & population structure
-
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Unmodeled factors & population structure
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Unmodeled factors & population structure

_

TRUE
MODEL
shafe?jf = UNMODELED

SNPs DBA FACTORS

(K) 12951
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Dependency among unmodeled factors are ignored

TRUE
MODEL
# of C3H UNMODELED
shgﬁi DBA FACTORS
(K) 12051
CAST B
SIMPLE
LINEAR
MODEL
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Mixed model accounts for the
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Linear Mixed Model (LMM)

Recently, the LMM has become a popular approach
for GWAS as it can correct for population structure.

The LMM incorporates genetic similarities between
all pairs of individuals, known as the kinship (K), into
their model and corrects for population structure.

Fraction of shared SNPs = IBS matrix
e B6 .9 7 7

Linear _
Model y - /u_l_)(lﬂl +]/ _____ I
wy=ptXfHute o K8

Var(U) — ngK Var(e) = Gezl . . B
yNN(X)B,O-gZK‘FO'jI) CAST




Previous methods

mvLMMs (Furlotte and Eskin, Genetics, 2015; Zhou et al., Nat Methods , 2012),

MTMM(Kor'fe et al., Nat Genet , 2012) - LMM based approaches, computational
costs scale quadratically with the number of phenotypes



Previous methods

MDMR (Zapala et al., Front Genet, 2012)
Multivariate Distance Matrix Regression analysis.

Form a statistic to test the effect of some covariates on all of the phenotypes by
utilizing the similarity matrix that reflects the correlation of the samples with
respect to the expression values over the genes.

(YY) (2-1)

"Pseudo" F-statistics, /' = —==
tr(RR")/ (n-2)




Univariate-phenotypes analysis

Traditional univariate analysis for snp 7 and

phenotype
v, =Xp;

Hypothesis testing
‘Model 1 .y, =e,
Model2:y,=X.[ +e;

H,:p =0
H,:p,#0

b,

RSS; : Sum of squares stimates of model i
p; . Number of parameters of model i
n: Number of samples

%, =XB=X(X,X)" Xy,

I 1 1 1 1

i:\i =JV; _J;j =JY; _X(X’X)_IX'yJ

I I 1 1

Al A

F

_(RSS,—RSS,)/(p,~p) _ I3,/ 2-1)
RSS, /(n—p,)

Fi7 [ (n-2)



Multiple-phenotypes analysis

Extend to multivariate case for snp 7 and g number of
phenotypes

Y=Xp+E p

X,(XX)' XY
Y-Y

= >
I

Hypothesis testing
o r(YY)/2=1)

#(R'R)/ (n-2)

Caveat: Since Y is not independent, F does not follow F
distribution




Linear Mixed Model

y;=Xp +u+e, y ~NXp,Z) Z:o'gzK+0'fI

1/2
'y, ~NE"XB,%)
=i 1/2X
-2 212
=3y o Y21
=X,XX)'X.¥, ;7'17 [(n-2)



GAMMA

(Generalized Analysis of Molecular variance for Mixed model Analysis)

Use LMM to de-correlate the correlation structure between the
individuals (population structure) by rotating the genotype and
phenotype space with their variance.

Yy, /2—1/2 2_1/2)72

@ 5=062K+0l //5% |
s Y W\\ J x"%,

@) ®)

y~NXB,0,K+0,1) >y~ N(Z2XB,T)

Then apply multivariate regression method (MDMR) to form a
statistic to test the effect of covariates on multiple phenotypes.



Simulated Study
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Yeast dataset

Trans-regulatory hotspots
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Yeast dataset
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Yeast dataset
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Gut microbiome dataset
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Signals detected by GAMMA

]
Chr| Peak SNP | Position Associated |Number of | Clinical QTL | cis eQTL Overlapping with
(Mb) Region (Mb) | Genes single Genus GWAS
1 |[rs31797108 | 182072111 18.1-18.2 21 body fat %
increase
2 | rs27323290 | 157697578 11.4-15.8 7 food intake, Ctnnbll Akkermansia
welght muciniphila
4 |rs28319212 | 95462396 82.1-10.5 T4 food intake |Caapl, Ift74| Oscillospira spp.
6 | rsH0368681 | 38026365 37.5-38.0 16 Atp6v0ad, Sarcina spp.
Replinl,
Zfpd67
T | rs33129247 | 68944648 68.5-71.4 3 TG, Gonadal | Nr2f2, Igfir Akkermansia
Fat muciniphila
11 | rs3680824 | 104011091 10.2-10.4 47 Cedce85a,
Efempl
14 | rs30384023 | 120051254 11.9-12.1 5 Dnajc3,
Uggt2,
Farpl
16 | rs4154709 | 6236151 62.3-75.0 1
x | rs29064137 | 87504122 87.2-88.6 1




gut microbiome dataset
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