EFFICIENT AND ACCURATE MULTIPLE-PHENOTYPES REGRESSION METHOD FOR HIGH DIMENSIONAL DATA CONSIDERING POPULATION STRUCTURE

Jong Wha Joo, Eun Yong Kang, Elin Org, Nick Furlotte, Brian Parks, Aldons J. Lusis, Eleazar Eskin UCLA

Multiple-phenotypes analysis

- Typical GWAS examine the correlation of each phenotype and genotype pair one at a time, single-phenotype analysis.
- Often it is very useful to analyze many phenotypes together. Especially, with the advent of high-throughput technology, highdimensional multiple-phenotypes analysis is preferable.

Multiple-phenotypes analysis

Information can be borrowed across genes to improve variance estimates and thereby increase statistical power.

- Address overall state of a cell or tissue. Detect variants related to a profile of microbiota with tens of thousands species.
- Detecting regulatory hotspots in eQTL studies.

Previous methods

Proceedin	gs of	the National Acader	my of Sciences of	the United State	es of America			PN	IA	S
CURRENT IS	SLIF /	ARCHIVE // NEWS & M		UTHORS // ABOU			WSE BY TOP	PIC / FARLY	EDITION	
	fre Gl	ontiers in Enetics				pul doi	METHODS blished: 27 Sep i: 10.3389/fgene	ARTICLE tember 2012 e.2012.00190		
Sing										
data	S		DNE	Subject Areas	For Authors	About Us	Searc	:h		
Orly Alt	re							a	advanced	
	М	🔓 OPEN ACCESS 🏂 PEER-RE		GENETICS	Bro	owse For A	8	33	2	
		RESEARCH ARTICLE		NATURE METH	ODS BRIEF COM	MUNICATION	OTATIONO	CAVE C	0114	< 🛛 🖨
		MultiPhen: Jo in GWAS	DÎ GOPEN ACCESS 🖻 PE							
			RESEARCH ARTICLE	Efficient multivariate linear mixed model						
			Generalize Caroline M Nievergelt,	algorithr	A mixed-me association	odel appro i studies c	bach fo	or geno elated t	me-w raits i	ride n
				Xiang Zhou & I	structured	population	IS			
				Affiliations C	Arthur Korte, Bjarni J	J Vilhjálmsson, Vin	icent Segura	, Alexander I	Platt, Quan	Long & Magnus
				Nature Methods	Nordborg					
				Received 06 Ma	Affiliations Contrib	utions Correspon	nding autho	r		
					Nature Genetics 44,	1066–1071 (2012)	doi:10.103	8/ng.2376		
					Received 17 January	2012 Accepted 0	5 July 2012	Published on	line 19 Aug	just 2012

Previous methods

MANOVA, multivariate regression analysis

- Designed for use with a small number of variables. P<<N</p>
- MANOVA assumes MVN
- Only can use Euclidean distances

Data reduction methods - Cluster analysis, factor analysis, etc.

- mvLMMs (Furlotte and Eskin, Genetics 2015; Zhou et al., Nat Methods , 2012) , MTMM(Korte et al., Nat Genet , 2012) - LMM based approaches, computational costs scale quadratically with the number of phenotypes
- □ MDMR (Zapala et al., Front Genet, 2012)
 - Multivariate Distance Matrix Regression analysis.
 - Form a statistic to test the effect of some covariates on all of the phenotypes by utilizing the similarity matrix that reflects the correlation of the samples with respect to the expression values over the genes.

"Pseudo" F-statistics, $F = \frac{tr(\hat{Y}\hat{Y}')/(2-1)}{tr(\hat{R}\hat{R}')/(n-2)}$

Population structure cause False Positives

- GWAS test the allele frequency differences between cases and controls to find SNPs correlated with a disease.
- Allele frequencies vary from population to population due to each population's unique genetic/social history.
- Not only disease-causing SNPs cause allele frequency difference but also SNPs influenced by ancestry may also cause allele frequency difference.

Population structure cause False Positives

- GWAS test the allele frequency differences between cases and controls to find SNPs correlated with a disease.
- Allele frequencies vary from population to population due to each population's unique genetic/social history.
- Not only disease-causing SNPs cause allele frequency difference but also SNPs influenced by ancestry may also cause allele frequency difference.
- This problem is even more serious when analyzing multiple-phenotypes because this bias in test statistics accumulates from each phenotype.
- Unfortunately, none of the previously mentioned multivariate methods are able to correct for the population structure and may cause a significant amount of false positive results.

A typical single-SNP test

$$\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{X}\boldsymbol{\beta} + \mathbf{e}$$

- **y** : phenotypes (size n)
- X : A SNP to test
- β : contribution from the SNP
- e: (n × 1) random effect,

 $Var(\mathbf{e}) = \sigma_e^2 \mathbf{I}$

A 'hypothetical' true genetic model

$$\mathbf{y} = \boldsymbol{\mu} + \sum_{i=1}^{m} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

y : phenotypes (size n)
$$X_i$$
 : i-th SNP to test β_i : contribution from the i-th SNPe : (n × 1) random effect,Var(e) = $\sigma_e^2 I$

True effect of a single SNP

 $\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$

Actual test is simple

TRUE
$$\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

$$\mathbf{y} = \hat{\boldsymbol{\mu}} + X_k \hat{\boldsymbol{\beta}}_k + \mathbf{e}$$

There are unmodeled genetic factors

TRUE
$$\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

UNMODELED
FACTORS

SIMPLE LINEAR MODEL

$$\mathbf{y} = \hat{\boldsymbol{\mu}} + X_k \hat{\boldsymbol{\beta}}_k + \mathbf{e}$$

Unmodeled factors are not known

SIMPLE LINEAR MODEL

$$\mathbf{y} = \hat{\boldsymbol{\mu}} + X_k \hat{\boldsymbol{\beta}}_k + \mathbf{e}$$

Entering mouse genetics relevant to common diseases

Classical inbred strains

Confounding effects in asspriatize r KA, Eskinie , Kang HM et al. Nature. Aug 2007, 448

Complex genetic relatedness of lab strains

Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap \$

Complex genetic relatedness of lab strains

Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap

Complex genetic relatedness of lab strains

Body weight phenotypes of 38 inbred mouse strains from JAX MPE

What we would expect

What we actually observed

Example of spurious associations

Example of spurious associations

Body weight phenotypes of 38 inbred mouse strains from JAX MPE

Source of spurious association

 H_0 : [Phenotype]⊥[SNP]

H₁: [Phenotype]~[SNP]

SNP

Phenotype

Source of spurious association

H_0 : [Phenotype]⊥[SNP]

Many SNPs are strongly correlated to the population structure

H_0 : [Phenotype] \perp [SNP]

Some phenotypes are strongly correlated to population structure

H_0 : [Phenotype] \perp [SNP]

H₀: [Phenotype]~[SNP]

pes become indirectly correlated

Use of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse

Mathew T. Pletcher^{1,2}, Philip McClurg¹, Serge Batalov¹, Andrew I. Su¹, S. Whitney Barnes¹, Erica Lagler¹, Ron Korstanje³, Xiaosong Wang³, Deborah Nusskern⁴, Molly A. Bogue³, Richard J. Mural⁴, Beverly Paigen³, Tim Wiltshire^{1*}

1 Genomics Institute of the Novartis Resea States of America, 3 The Jackson Laborate

Rapid expansion of available development of new methods provides an expedient way polymorphisms for the purpo (SNP) data have lacked the de remedy this, 470,407 allele ca of the SNP set with statistica haplotype could successfully method to high-density lipop loci (QTL). The inferred haplot more easily identified and ch

In Silico Mapping of Complex Disease-Related Traits in Mice

Andrew Grupe,^{1*} Soren Germer,^{2*} Jonathan Usuka,^{3*} Dee Aud,¹ John K. Belknap,⁴ Robert F. Klein,⁴ Mandeep K. Ahluwalia,² Russell Higuchi,² Gary Peltz¹[†]

An Integrated in Silico Gene Mapping Strategy in Inbred Mice

Alessandra C. L. Cervino,^{*,1} Ariel Darvasi,[†] Mohammad Fallahi,^{*} Christopher C. Mader^{*} and Nicholas F. Tsinoremas^{*}

*Department of Informatics, Scripps Florida, Jupiter, Florida 33458 and [†]The Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel

> Manuscript received August 28, 2006 Accepted for publication September 28, 2006

ABSTRACT

In recent years *in silico* analysis of common laboratory mice has been introduced and subsequently applied, in slightly different ways, as a methodology for gene mapping. Previously we have demonstrated some limitation of the methodology due to sporadic genetic correlations across the genome. Here, we revisit the three main aspects that affect *in silico* analysis. First, we report on the use of marker maps: we compared our existing 20,000 SNP map to the newly released 140,000 SNP map. Second, we investigated the effect of varying strain numbers on power to map QTL. Third, we introduced a novel statistical approach: a cladistic analysis, which is well suited for mouse genetics and has increased flexibility over existing *in silico* approaches. We have found that in our examples of complex traits, *in silico* analysis by itself does fail to uniquely identify quantitative trait gene (QTG)-containing regions. However, when combined with additional information, it may significantly help to prioritize candidate genes. We therefore recommend using an integrated work flow that uses other genomic information such as linkage regions, regions of shared ancestry, and gene expression information to obtain a list of candidate genes from the genome.

Experimental murine genetic potential for understanding required for analysis of such a computational method for notypic traits and a murine d developed. After entry of phe strains, the phenotypic and ge the chromosomal regions re

Confounding e

Use of a Dense Single Nucleotide Polymorphism Map for In Silico Mapping in the Mouse

Mathew T. Pletcher^{1,2}, Philip McClurg¹, Serge Batalov¹, Andrew I. Su¹, S. Whitney Barnes¹, Erica Lagler¹, Ron Korstanje³, Xiaosong Wang³, Deborah Nusskern⁴, Molly A. Bogue³, Richard J. Mural⁴, Beverly Paigen³, Tim Wiltshire^{1*}

1 Genomics Institute of the Novartis Resea States of America, **3** The Jackson Laborate

Rapid expansion of available development of new methods provides an expedient way polymorphisms for the purpo (SNP) data have lacked the de remedy this, 470,407 allele ca of the SNP set with statistica haplotype could successfully method to high-density lipop loci (QTL). The inferred haplot more easily identified and ch

In Silico Mapping of Complex Disease-Related Traits in Mice

Andrew Grupe,^{1*} Soren Germer,^{2*} Jonathan Usuka,^{3*} Dee Aud,¹ John K. Belknap,⁴ Robert F. Klein,⁴ Mandeep K. Ahluwalia,²

Russell Higuchi,² Gary Peltz^{1.}

Experimental murine geno CORRECTION FOR potential for understanding required for analysis POPULATION STRUCTURE a computational method for notypic traits and a murine of developed. After entry of pho strains, the phenotypic and ge the chromosomal regions re

,*¹¹ Ariel Darvasi,[†] Mohammad Fallahi,* der* and Nicholas F. Tsinoremas*

pping Strategy in Inbred Mice

*Department of Informatics, Scripps Florida, Jupiter, Florida 33458 and [†]The Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel

in Silico Gene Ma

Manuscript received August 28, 2006 Accepted for publication September 28, 2006

ABSTRACT

In recent years *in silico* analysis of common laboratory mice has been introduced and subsequently applied, in slightly different ways, as a methodology for gene mapping. Previously we have demonstrated some limitation of the methodology due to sporadic genetic correlations across the genome. Here, we revisit the three main aspects that affect *in silico* analysis. First, we report on the use of marker maps: we compared our existing 20,000 SNP map to the newly released 140,000 SNP map. Second, we investigated the effect of varying strain numbers on power to map QTL. Third, we introduced a novel statistical approach: a cladistic analysis, which is well suited for mouse genetics and has increased flexibility over existing *in silico* approaches. We have found that in our examples of complex traits, *in silico* analysis by itself does fail to uniquely identify quantitative trait gene (QTG)-containing regions. However, when combined with additional information, it may significantly help to prioritize candidate genes. We therefore recommend using an integrated work flow that uses other genomic information such as linkage regions, regions of shared ancestry, and gene expression information to obtain a list of candidate genes from the genome.

Confounding e

Unmodeled factors are not known

SIMPLE LINEAR MODEL

$$\mathbf{y} = \hat{\boldsymbol{\mu}} + X_k \hat{\boldsymbol{\beta}}_k + \mathbf{e}$$

TRUE
$$\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

UNMODELED
FACTORS

TRUE
$$\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

UNMODELED
FACTORS

TRUE
$$\mathbf{y} = \boldsymbol{\mu} + X_k \boldsymbol{\beta}_k + \sum_{i \neq k} X_i \boldsymbol{\beta}_i + \mathbf{e}$$

UNMODELED
FACTORS

Strain	SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP10
B6	Α	С	С	G	Т	Α	Α	G	С	Т
C3H	Α	С	С	G	Α	Α	Α	G	С	Т
DBA	Α	С	С	G	Α	Α	Т	G	Т	Т
12951	Α	G	С	G	т	С	Т	G	С	Т
CAST	т	G	T	С	Α	С	Α	Α	т	G

true Model		У	_	÷	<i>l</i> +	- 2	$K_k \beta_k$	+ 2	$\int_{i\neq k}$	$X_i \beta_i$	+ e		
	B6		9	7	7	บ							
# of	СЗН	9		8	7	2			UNMO	DELED			
shared SNPs	DBA	7	8		6	2			FACT	ORS			
(K)	129S1	7	7	6		2							
	CAST	บ	2	2	2								
Strain	SNP	1	SN	P2	SN	IP3	SNP4	SNP5	SNP6	SNP7	SNP8	SNP9	SNP1
B6	Α		C	;	(C	G	Т	Α	Α	G	С	т
C3H	Α		C	;	(0	G	Α	Α	Α	G	С	т
DBA	Α		C	;	(C	G	Α	Α	Т	G	т	т
12951	Α		G	;	(C	G	т	С	Т	G	С	т
CAST	т		G	•	٦	Ţ	С	Α	С	Α	Α	т	G

Dependency among unmodeled factors are ignored

SIMPLE LINEAR MODEL

Mixed model accounts for the dependency

Linear Mixed Model (LMM)

- Recently, the LMM has become a popular approach for GWAS as it can correct for population structure.
- The LMM incorporates genetic similarities between all pairs of individuals, known as the kinship (K), into their model and corrects for population structure.

Previous methods

MANOVA, multivariate regression analysis

- Designed for use with a small number of variables. P<<N</p>
- MANOVA assumes MVN
- Only can use Euclidean distances
- Data reduction methods Cluster analysis, factor analysis, etc.
- mvLMMs (Furlotte and Eskin, Genetics, 2015; Zhou et al., Nat Methods , 2012) , MTMM(Korte et al., Nat Genet , 2012) - LMM based approaches, computational costs scale quadratically with the number of phenotypes
- □ MDMR (Zapala et al., Front Genet, 2012)
 - Multivariate Distance Matrix Regression analysis.
 - Form a statistic to test the effect of some covariates on all of the phenotypes by utilizing the similarity matrix that reflects the correlation of the samples with respect to the expression values over the genes.

"Pseudo" F-statistics, $F = \frac{tr(\hat{Y}\hat{Y}')/(2-1)}{tr(\hat{R}\hat{R}')/(n-2)}$

Previous methods

MANOVA, multivariate regression analysis

- Designed for use with a small number of variables. P<<N</p>
- MANOVA assumes MVN
- Only can use Euclidean distances
- Data reduction methods Cluster analysis, factor analysis, etc.
- mvLMMs (Zhou et al., Nat Methods , 2012) , MTMM(Korte et al., Nat Genet , 2012) - LMM based approaches, computational costs scale quadratically with the number of phenotypes
- □ MDMR (Zapala et al., Front Genet, 2012)
 - Multivariate Distance Matrix Regression analysis.
 - Form a statistic to test the effect of some covariates on all of the phenotypes by utilizing the similarity matrix that reflects the correlation of the samples with respect to the expression values over the genes.

"Pseudo" F-statistics, $F = \frac{tr(\hat{Y}\hat{Y}')/(2-1)}{tr(\hat{R}\hat{R}')/(n-2)}$

Univariate-phenotypes analysis

Traditional univariate analysis for snp i and phenotype j *RSS_i*: Sum of squares stimates of model *i*

$$y_j = X_i \beta_j + e_j$$

- p_i : Number of parameters of model i
- *n*: Number of samples

$$\hat{y}_j = X_i \hat{\beta}_j = X_i (X'_i X_i)^{-1} X'_i y_j$$

$$\begin{array}{l} \square \text{ Hypothesis festing} \\ \begin{cases} H_0: \beta_j = 0 \\ H_A: \beta_j \neq 0 \end{cases} \begin{array}{l} \text{Model 1: } y_j = e_j \\ \text{Model 2: } y_j = X_i \beta_j + e_j \end{array}$$

$$F = \frac{(RSS_1 - RSS_2)/(p_2 - p_1)}{RSS_2/(n - p_2)} = \frac{\hat{y}_j'\hat{y}_j/(2 - 1)}{\hat{r}_j'\hat{r}_j/(n - 2)}$$

Multiple-phenotypes analysis

Extend to multivariate case for snp *i* and *m* number of phenotypes

$$Y = X_i \beta + E \qquad \hat{Y} = X_i (X'_i X_i)^{-1} X'_i Y$$
$$\hat{R} = Y - \hat{Y}$$

□ Hypothesis testing $F = \frac{tr(\hat{Y}\hat{Y})/(2-1)}{tr(\hat{R}\hat{R})/(n-2)}$

Caveat: Since Y is not independent, F does not follow F distribution

Linear Mixed Model

 $y_i = X_i \beta_i + u_i + e_i$ $y_i \sim N(X_i \beta_i, \Sigma_i)$ $\Sigma = \sigma_o^2 K + \sigma_e^2 I$ $\hat{\Sigma}^{-1/2} y_i \sim N(\hat{\Sigma}^{-1/2} X_i \beta_i, \Sigma_i)$ $\tilde{X}_i = \hat{\Sigma}^{-1/2} X_{\pi}$ $\tilde{y}_i = \hat{\Sigma}^{-1/2} y_i$ $F = \frac{\hat{\tilde{y}}_{j} \hat{\tilde{y}}_{j} / (2-1)}{\hat{\tilde{r}}_{j} \hat{\tilde{r}}_{j} / (n-2)}$ $\hat{\tilde{y}}_i = \tilde{X}_i (\tilde{X}_i' \tilde{X}_i)^{-1} \tilde{X}_i' \tilde{y}_i$

 $\hat{\tilde{r}}_j = \tilde{y}_j - \hat{\tilde{y}}_j$

GAMMA

(Generalized Analysis of Molecular variance for Mixed model Analysis)

Use LMM to de-correlate the correlation structure between the individuals (population structure) by rotating the genotype and phenotype space with their variance.

Then apply multivariate regression method (MDMR) to form a statistic to test the effect of covariates on multiple phenotypes.

Simulated Study

(c) MDMR

(d) GAMMA

Yeast dataset

Yeast dataset

Yeast dataset

Gut microbiome dataset

(b) GAMMA

Signals detected by GAMMA

Chr	Peak SNP	Position	Associated	Number of	Clinical QTL	cis eQTL	Overlapping with
		(Mb)	Region (Mb)	Genes	· ••		single Genus GWAS
1	rs31797108	182072111	18.1-18.2	21	body fat %		
					increase		
2	rs27323290	157697578	11.4-15.8	7	food intake,	Ctnnbl1	Akkermansia
					weight		muciniphila
4	rs28319212	95462396	82.1-10.5	74	food intake	Caap1, Ift74	Oscillospira spp.
6	rs50368681	38026365	37.5-38.0	16		Atp6v0a4,	Sarcina spp.
						Replin1,	
						Zfp467	
7	rs33129247	68944648	68.5-71.4	3	TG, Gonadal	Nr2f2, Igf1r	Akkermansia
					Fat		muciniphila
11	rs3680824	104011091	10.2-10.4	47		Ccdc85a,	
						Efemp1	
14	rs30384023	120051254	11.9-12.1	5		Dnajc3,	
						Uggt2,	
						Farp1	
16	rs4154709	6236151	62.3-75.0	1			
x	rs29064137	87504122	87.2-88.6	1			

gut microbiome dataset

(b) EMMA

Thank you ! – zarlab.cs.ucla.edu

Eun Yong Kang Nick Furlotte Elin Org Brian Parks Aldons J. Lusis **Eleazar Eskin***

