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Multiple-phenotypes analysis 

 Typical GWAS examine the correlation of each 
phenotype and genotype pair one at a time, 
single-phenotype analysis.  
 

 Often it is very useful to analyze many 
phenotypes together. Especially, with the 
advent of high-throughput technology, high-
dimensional multiple-phenotypes analysis is 
preferable.  
 
 



Multiple-phenotypes analysis 

 Information can be borrowed across 
genes to improve variance estimates 
and thereby increase statistical power. 
 

 Address overall state of a cell or 
tissue. Detect variants related to a 
profile of microbiota with tens of 
thousands species. 
 

 Detecting regulatory hotspots in eQTL 
studies. 
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Previous methods 



Previous methods 

 MANOVA, multivariate regression analysis 
 Designed for use with a small number of variables. P<<N 
 MANOVA assumes MVN 
 Only can use Euclidean distances 

 Data reduction methods - Cluster analysis, factor analysis, etc.  
 mvLMMs (Furlotte and Eskin, Genetics 2015; Zhou et al., Nat Methods , 2012) , 

MTMM(Korte et al., Nat Genet , 2012) - LMM based approaches, computational 
costs scale quadratically with the number of phenotypes   

 MDMR (Zapala et al., Front Genet,  2012) 
 Multivariate Distance Matrix Regression analysis. 
 Form a statistic to test the effect of some covariates on all of the phenotypes by 

utilizing the similarity matrix that reflects the correlation of the samples with 
respect to the expression values over the genes. 



 GWAS test the allele frequency differences between cases and 
controls to find SNPs correlated with a disease. 

 Allele frequencies vary from population to population due to each 
population’s unique genetic/social history. 

 Not only disease-causing SNPs cause allele frequency difference but 
also SNPs influenced by ancestry may also cause allele frequency 
difference. 

 

Population structure cause False Positives 



 GWAS test the allele frequency differences between cases and 
controls to find SNPs correlated with a disease. 

 Allele frequencies vary from population to population due to each 
population’s unique genetic/social history. 

 Not only disease-causing SNPs cause allele frequency difference but 
also SNPs influenced by ancestry may also cause allele frequency 
difference. 

 This problem is even more serious when analyzing multiple-phenotypes 
because this bias in test statistics accumulates from each phenotype.  

 Unfortunately, none of the previously mentioned multivariate methods 
are able to correct for the population structure and may cause a 
significant amount of false positive results.  

 

Population structure cause False Positives 



A typical single-SNP test 

y : phenotypes (size n) 
X : A SNP to test 
β: contribution from the SNP 
e : (n×1) random effect,   Var(e) = σe

2I 
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A ‘hypothetical’ true genetic model 

y : phenotypes (size n) 
Xi : i-th SNP to test 
βi: contribution from the i-th SNP 
e : (n×1) random effect,   Var(e) = σe

2I 
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True effect of a single SNP 
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Actual test is simple 
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There are unmodeled genetic factors 
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Unmodeled factors are not known 
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Entering mouse genetics… 
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Frazer KA, Eskin E, Kang HM et al. Nature. Aug 2007, 448(3  

Classical inbred strains 
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Complex genetic relatedness of lab 
strains 

 

Confounding effects in association and eQTL studies 

Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap S  
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Complex genetic relatedness of lab 
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Confounding effects in association and eQTL studies 

Phylogeny of 38 inbred mouse strains using 140,000 mouse HapMap S  
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Complex genetic relatedness of lab 
strains 
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What we would expect 

Genome-wide association map 

Cumulative  
p-value  
distribution 

Q-Q 
plot 
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What we actually observed 
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Example of spurious associations 
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Example of spurious associations 
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Source of spurious association 

Confounding effects in association and eQTL studies 

SNP Phenotype 

H0: [Phenotype]⊥[SNP] H1: [Phenotype]~[SNP] 
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Source of spurious association 
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Many SNPs are  
strongly correlated to the population structure 

Confounding effects in association and eQTL studies 
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Some phenotypes are  
strongly correlated to population structure 
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SNPs and phenotypes become indirectly correlated 
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NO CORRECTION FOR 
POPULATION STRUCTURE 



Unmodeled factors are not known 
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Unmodeled factors & population structure 
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Unmodeled factors & population structure 
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Unmodeled factors & population structure 
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Unmodeled factors & population structure 

Effective design and analysis of systems genetics studies 8/16/2017 34 

TRUE 
MODEL 

Strain SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 
B6 A C C G T A A G C T 
C3H A C C G A A A G C T 
DBA A C C G A A T G T T 
129S1 A G C G T C T G C T 
CAST T G T C A C A A T G 

9 7 7 1 

9 8 7 2 

7 8 6 2 

7 7 6 2 

1 2 2 2 

B6 

C3H 

DBA 

129S1 

CAST 

# of 
shared 

SNPs 
      (K) 



Dependency among unmodeled factors are ignored 
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Mixed model accounts for the 
dependency 
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Linear Mixed Model (LMM) 

 Recently, the LMM has become a popular approach 
for GWAS as it can correct for population structure.  

 The LMM incorporates genetic similarities between 
all pairs of individuals, known as the kinship (K), into 
their model and corrects for population structure.  
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Previous methods 

 MANOVA, multivariate regression analysis 
 Designed for use with a small number of variables. P<<N 
 MANOVA assumes MVN 
 Only can use Euclidean distances 

 Data reduction methods - Cluster analysis, factor analysis, etc.  
 mvLMMs (Furlotte and Eskin, Genetics, 2015; Zhou et al., Nat Methods , 2012) , 

MTMM(Korte et al., Nat Genet , 2012) - LMM based approaches, computational 
costs scale quadratically with the number of phenotypes   

 MDMR (Zapala et al., Front Genet,  2012) 
 Multivariate Distance Matrix Regression analysis. 
 Form a statistic to test the effect of some covariates on all of the phenotypes by 

utilizing the similarity matrix that reflects the correlation of the samples with 
respect to the expression values over the genes. 



Previous methods 

 MANOVA, multivariate regression analysis 
 Designed for use with a small number of variables. P<<N 
 MANOVA assumes MVN 
 Only can use Euclidean distances 

 Data reduction methods - Cluster analysis, factor analysis, etc.  
 mvLMMs (Zhou et al., Nat Methods , 2012) , MTMM(Korte et al., Nat Genet , 

2012) - LMM based approaches, computational costs scale quadratically with the 
number of phenotypes   

 MDMR (Zapala et al., Front Genet,  2012) 
 Multivariate Distance Matrix Regression analysis. 
 Form a statistic to test the effect of some covariates on all of the phenotypes by 

utilizing the similarity matrix that reflects the correlation of the samples with 
respect to the expression values over the genes. 



Univariate-phenotypes analysis 

 Traditional univariate analysis for snp    and 
phenotype  

 
 

 Hypothesis testing 



Multiple-phenotypes analysis 

 Extend to multivariate case for snp    and      number of 
phenotypes  

 
 
 Hypothesis testing 

 
 

 Caveat: Since Y is not independent,  F does not follow F 
distribution 
 



Linear Mixed Model 

 
 



GAMMA  
(Generalized Analysis of Molecular variance for Mixed model Analysis)  

 Use LMM to de-correlate the correlation structure between the 
individuals (population structure) by rotating the genotype and 
phenotype space with their variance. 
 
 

 
 
 

 
 
 Then apply multivariate regression method (MDMR) to form a 

statistic to test the effect of covariates on multiple phenotypes.  
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Yeast dataset 
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 Yeast dataset 

* Putative hotspots identified from NICE (GenomeBiol. Joo et al, 2014)  
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Gut microbiome dataset  

(a) MDMR on Chromosome 19 

(b) GAMMA 
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Signals detected by GAMMA 

 



gut microbiome dataset  
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